Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Journal of Computational Science ; 66, 2023.
Article in English | Scopus | ID: covidwho-2246506

ABSTRACT

Traditional classification techniques usually classify data samples according to the physical organization, such as similarity, distance, and distribution, of the data features, which lack a general and explicit mechanism to represent data classes with semantic data patterns. Therefore, the incorporation of data pattern formation in classification is still a challenge problem. Meanwhile, data classification techniques can only work well when data features present high level of similarity in the feature space within each class. Such a hypothesis is not always satisfied, since, in real-world applications, we frequently encounter the following situation: On one hand, the data samples of some classes (usually representing the normal cases) present well defined patterns;on the other hand, the data features of other classes (usually representing abnormal classes) present large variance, i.e., low similarity within each class. Such a situation makes data classification a difficult task. In this paper, we present a novel solution to deal with the above mentioned problems based on the mesostructure of a complex network, built from the original data set. Specifically, we construct a core–periphery network from the training data set in such way that the normal class is represented by the core sub-network and the abnormal class is characterized by the peripheral sub-network. The testing data sample is classified to the core class if it gets a high coreness value;otherwise, it is classified to the periphery class. The proposed method is tested on an artificial data set and then applied to classify x-ray images for COVID-19 diagnosis, which presents high classification precision. In this way, we introduce a novel method to describe data pattern of the data "without pattern” through a network approach, contributing to the general solution of classification. © 2022 Elsevier B.V.

2.
10th International Conference on Complex Networks and Their Applications, COMPLEX NETWORKS 2021 ; 1015:39-49, 2022.
Article in English | Scopus | ID: covidwho-1626567

ABSTRACT

In real world data classification tasks, we always face the situations where the data samples of the normal cases present a well defined pattern and the features of abnormal data samples vary from one to another, i.e., do not show a regular pattern. Up to now, the general data classification hypothesis requires the data features within each class to present a certain level of similarity. Therefore, such real situations violate the classic classification condition and make it a hard task. In this paper, we present a novel solution for this kind of problems through a network approach. Specifically, we construct a core-periphery network from the training data set in such way that core node set is formed by the normal data samples and peripheral node set contains the abnormal samples of the training data set. The classification is made by checking the coreness of the testing data samples. The proposed method is applied to classify radiographic image for COVID-19 diagnosis. Computer simulations show promising results of the method. The main contribution is to introduce a general scheme to characterize pattern formation of the data “without pattern”. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

3.
10th International Conference on Complex Networks and Their Applications, COMPLEX NETWORKS 2021 ; 1015:16-26, 2022.
Article in English | Scopus | ID: covidwho-1626517

ABSTRACT

An important task in combating COVID-19 involves the quick and correct diagnosis of patients, which is not only critical to the patient’s prognosis, but can also help to optimize the configuration of hospital resources. This work aims to classify chest radiographic images to help the diagnosis and prognosis of patients with COVID-19. In comparison to images of healthy lungs, chest images infected by COVID-19 present geometrical deformations, like the formation of filaments. Therefore, fractal dimension is applied here to characterize the levels of complexity of COVID-19 images. Moreover, real data often contains complex patterns beyond physical features. Complex networks are suitable tools for characterizing data patterns due to their ability to capture the spatial, topological and functional relationship between the data. Therefore, a complex network-based high-level data classification technique, capable of capturing data patterns, is modified and applied to chest radiographic image classification. Experimental results show that the proposed method can obtain high classification precision on X-ray images. Still in this work, a comparative study between the proposed method and the state-of-the-art classification techniques is also carried out. The results show that the performance of the proposed method is competitive. We hope that the present work generates relevant contributions to combat COVID-19. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

SELECTION OF CITATIONS
SEARCH DETAIL